通信量40%削減を実現 非同期型の「台帳型連合学習」を開発し、物体検出分野における連合学習技術の適用を目指す
株式会社Rosso(ロッソ 東京都渋谷区、代表取締役:川畑 和成、以下:Rosso)は、台帳型連合学習(特許出願中)を開発し、完全非同期かつ通信量を大幅に削減した連合学習(※1)を実現しました。(40%以上の通信量削減を2024年7月31日に確認)<br />
複雑な実装や処理が必要な従来型連合学習と比べ、台帳型は非常にシンプルな構成で実装でき、導入コストが低いのが特徴です。今後は物体検出や物体追跡分野への適用を目指します。<br />
<br />
※1:連合学…
Source: プレスリリース新着